
Intro to R and RStudio
Justin Millar 

August 30, 2017



Links

Etherpad notes

Data Carpentry R lesson

Download R

Download RStudio

·

·

·

·

2/20

https://board.net/p/ufr-2017-08-30
http://www.datacarpentry.org/R-ecology-lesson/
https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download


Why R?

R doesn't involve pointing and clicking

Great for reproducibility

Works for all sorts of data

Creating awesome graphics

Interdisplincary with a large community

Free, open-source, and cross-platform

·

·

·

·

·

·

3/20



RStudio

RStudio is a free Integrated Development Environment (IDE) for working with R

This provides a framework for:

Writing code

Navigating files

Visualizing packages

Creating projects

Many other goodies (version control, making packages, Shiny apps)

·

·

·

·

·

4/20



RStudio Projects

Projects in RStudio create a folder for storing all of our files (data, scripts,
images)

Eliminates the need for setting our working directory with setwd()

It is useful to created individual folders within the project for storing data\,
scripts\, images\, etc.

When you want to open your project to a new computer, just copy this entire
folder onto the new machine

5/20



Interacting with R

Using the console

Writing scripts

·

Immediately execute commands

Console shows >when ready to accept a command

Console shows + when waiting for more information

-

-

-

Press Esc to cancel incomplete commands-

·

Creates a complete record of our process

Execute commands directly from the script editor by using the Ctrl +
Enter (Cmd + Return on Mac)

Run the entire script using Ctrl + Shift + Enter

-

-

-

6/20



Using Help Files

Use ? to get the help file for a function

Use args() function to get the arguments for a function

Use ?? to search for a term in help files

Look at the Cheatsheets in the Help tab in RStudio

7/20



Creating objects/variables

We can assign values to objects using the assignment operator, and use R to do
useful things:

You may come across code that assigns values using = instead of <-, which can
have some slight differences

It is good practice to stick with<- for assigning values

weight_kg <- 55

2.2 * weight_kg  # Do math with variables 
 
weight_kg <- 57.5  # Save over an variables with new value(s) 
2.2 * weight_kg 
 
weight_lb <- 2.2 * weight_kg  # Create new variables with old ones

8/20

https://web.archive.org/web/20130610005305/https://stat.ethz.ch/pipermail/r-help/2009-March/191462.html


Functions and arguments

Functions are "canned scripts" which automate series of commands on one or
more inputs called arguments

Arguments can be anything (numbers, filenames, variables), options are
arguments that take on default values which can be altered by the user

It is also possible (and very useful) to create your own functions

b <- sqrt(a)

round(3.14159) 
args(round) 
round(3.14159, digits = 2)

9/20



Vectors and data types

We can save multiple values into a single variable, called a vector, using the c()
function:

Vectors can also contain characters:

Some useful functions:

weight_g <- c(50, 60, 65, 82) 
weight_g

animals <- c("mouse", "rat", "dog") 
animals

length(weight_g)  # Counts the number of elements in the vector 
class(weight_g)   # Identifies the type of elements  
str(weight_g)     # Display structure of object

10/20



Datatypes in R

"numeric" Numbers, including decimals

"character" Strings (text)

"logical" TRUE/FALSE (Boolean)

"integer" Integer values

"factor" Categorial variables (including strings)

11/20



Subsetting vectors

Subsetting vectors is done using square brackets:

Conditional subsetting can be done using TRUE/FALSE:

We can combine logical operators, like < and >, with TRUE/FALSE to subset only
TRUE values:

animals <- c("mouse", "rat", "dog", "cat") 
animals[2] 
animals[c(3, 2)]

weight_g <- c(21, 34, 39, 54, 55) 
weight_g[c(TRUE, FALSE, TRUE, TRUE, FALSE)]

weight_g > 50            # Returns vector of TRUE/FALSE 
weight_g[weight_g > 50]   # Returns vector of only TRUE elements

12/20



Multiple subsets using AND and OR

We can subset on multiple conditions using & for AND conditions (ie both are
TRUE), and | for OR conditions (ie either are TRUE):

Notice that we use == when subsetting instead of =, which is an assigning
operator

a = 4 can be read as 4 goes into a

a == 4 can be read as a is equal to 4

weight_g[weight_g < 30 | weight_g > 50] 
weight_g[weight_g >= 30 & weight_g == 21]

13/20



Searching for elements

One common task is searching for certain values or string:

Using | can get tedious, instead use %in% to test if any elements in a search
vector are present

animals <- c("bear", "tiger", "dog", "cat", "lion")  
# Find pets 
animals[animals == "dog" | animals == "cat" | animals == "mouse"]

pets <- c("dog", "cat", "mouse") 
pets %in% animals 
pets[pets %in% animals]

14/20



Reading CSV datafiles into R

We often store our data in comma seperated value (CSV) files, which can be read
into R using the read.csv() function:

Note: this code requires having a data/ folder in your project

# Download example .csv file 
download.file("https://ndownloader.figshare.com/files/2292169", 
              "data/portal_data_joined.csv") 
 
# Save into variable  
surveys <- read.csv('data/portal_data_joined.csv')

15/20



Functions for characterizing dataframe

We can run the name of the variable to view the dataframe, but often there will
be too much information to display in the console

Here are some useful functions for characterizing a dataframe:

head(surveys)     # Top of dataframe 
tail(surveys)     # Bottom of dataframe 
dim(surveys)      # Dimensions 
ncol(surveys)     # Number of columns 
nrow(surveys)     # Number of rows 
names(surveys)    # Column names 
rownames(surveys) # Row names 
str(surveys)      # Structure, with class, length, and content 
summary(surveys)  # Summary statistics for each columns

16/20



Indexing and subsetting dataframes

Dataframes are also subsetted or indexed with square brackets, expect we must
specify rows then columns[row,column]:

Use the - sign to exclude certain sections:

surveys[1, 1]   # first element in the first column of the data frame (as a vector) 
surveys[1, 6]   # first element in the 6th column (as a vector) 
surveys[, 1]    # first column in the data frame (as a vector) 
surveys[1]      # first column in the data frame (as a data.frame) 
surveys[1:3, 7] # first three elements in the 7th column (as a vector) 
surveys[3, ]    # the 3rd element for all columns (as a data.frame) 
head_surveys <- surveys[1:6, ] # equivalent to head(surveys)

surveys[,-1]          # The whole data frame, except the first column 
surveys[-c(7:34786),] # Equivalent to head(surveys)

17/20



Subsetting columns by name

Columns can be selected by name using the these operators:

surveys["species_id"]       # Result is a data.frame 
surveys[, "species_id"]     # Result is a vector 
surveys[["species_id"]]     # Result is a vector 
surveys$species_id          # Result is a vector

18/20



Factors

Factors are used for storing categorical data, which are separated into levels:

We can rename the levels in a factor, either individually or all at once:

Finally, we may want to convert factors to char or numeric:

sex <- factor(c("male", "female", "female", "male")) 
levels(sex) 
nlevels(sex)

levels(sex)[1] <- "F"       # Change the first element 
levels(sex) <- c("F", "M")  # Change all factors

as.character(sex) 
f <- factor(c(1990, 1983, 1977, 1998, 1990)) 
as.numeric(levels(f))[f] # We want to use the levels in this case

19/20



Exercises

1. What type of vectors are each of the columns in the surveys dataframe?

2. How many Neotoma albigula were collected in 1990?

3. Create a new dataframe that only contains records these species_id: RM, OL,
and PP.

4. With this new dataframe, use the plot() function to display the number of
each sex. Be sure all levels are correctly labelled.

5. Create a similar plot for the number of specimens caught in each year.

20/20


